Purification of Escherichia coli Chromosomal Segments without Cloning

Craig A. Bloch,*,1 Christopher K. Rode,* Victor H. Obreque,* and Jacques Mahillon†

*Department of Pediatrics, School of Medicine; and Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109; and †Unité de Génétique, Université Catholique de Louvain, Place Croix du Sud, 5 B-1348 Louvain-la-Neuve, Belgium

Received April 21, 1996

Pairs of genomic insertions made with elements carrying any one of several frequently used rare restriction sites allow physical purification of insertion delimited genes. However, native rare restriction sites can, either by causing (i) fragmentation of targeted intervals or (ii) generation of additional fragments that overlap electrophoretically with targeted ones, place severe limitations on this approach. We present a series of *Escherichia coli* mini-Tn 10 insertions containing the rare-cutting polylinker 2 (RCP2) of rare restriction sites, which includes the 18-base-pair I-SceI site (absent from native *E. coli* sequences). Pulsed-field gel purification from RCP2 double insertion mutants of both an I-SceI fragment from strain K-12 (containing ~90–95 min) and an allelic I-SceI fragment from a pathogenic strain is demonstrated. The complete series of RCP2 insertions, containing different antibiotic resistances at intervals of ~35 kb in prototype K-12 strain MG1655, allows rapid purification of the genes from any *E. coli* chromosomal interval as an isolated I-SceI fragment.

The advent of in-vitro cloning of genomic DNA into multicopy plasmids laid the foundation for much of the rapid growth in biology seen over the last twenty years. Nevertheless, molecular cloning as a means of obtaining genomic segments for physical analyses, poses significant drawbacks: (i) DNA sequences containing genes that are lethal in multicopy may be refractive to cloning (1); (ii) overlapping genomic representations at the borders between clones may add significant redundancy into the process of comprehensive nucleotide sequencing (2); and (iii) artificial rearrangements in cloned DNA sequences may subvert accurate construction of genomic physical maps.

An attractive alternative to molecular cloning—the direct isolation, from whole-genome preparations, of desired DNA segments in sufficient quantities—was taken a step closer to practice by descriptions of mobile-intron-encoded endonucleases possessing ultrarare activities (3). In particular, the I-SceI endonuclease from Saccharomyces cerevisiae, recognizing an 18-bp nonpalindromic site, presents the possibility of introducing unique cleavages into a genome as complex as that of humans (4). We present (i) a series of mini-Tn10 insertions (containing the I-SceI site) in Escherichia coli K-12 strain MG1655 and (ii) a method of using pairs of them in conjunction with I-SceI digestion of genomic DNA, to purify targeted chromosomal segments from both laboratory and naturally occurring E. coli.

MATERIALS AND METHODS

Bacterial genetics techniques. Bacterial strains (Table I) were grown in LB with aeration or on solid LB or M9/glucose (5). Media were supplemented with thiamine (50 μ g/ml; for K-12 strains), Km (25 μ g/ml), Sp (100 μ g/ml), and/or Cm (15 μ g/ml) as required. Cultures were incubated at 37° C, or at 32° C for P1 infections of RS218 and RS218-chimera cultures (6). Cells were stored long term by suspending in LB/glycerol (85%/15%; v/v), and cooling to -80° C. Bacteriophage stocks were grown and stored as described by Sternberg and Maurer (7). MG1655 mutants containing Tn10dKanRCP2, Tn10dSpcRCP2, or Tn10dCamRCP2 insertions were generated by electrotransformation with plasmids pG1290, pG1300, or

<u>Abbreviations:</u> bp, base pairs; CW, clockwise; Cm, chloramphenicol; CCW, counterclockwise; I-, intron-encoded (as in I-Sce I); Km, kanamycin; kb, kilobases or 1000 base pairs; LB, Luria-Bertani (medium); p, plasmid; PFGE, pulsed-field gel electrophoresis; RCP, rare-cutting polylinker; Tn, transposon; ::, novel junction (fusion or insertion).

¹ Correspondence to: Dr. C. Bloch, MSRBI, Rm. A500, 1150 W. Med. Ctr. Dr., University of Michigan Medical Center, Ann Arbor, MI 48109-0656. Fax 313 764-6837; e-mail: CBloch@UMich.edu.

TABLE 1
Bacterial strains, plasmids, and phage used in this study

Name	Description	Source or Reference
Strains		
MG1655	E. coli K-12 prototype	(13)
RS218	E. coli newborn-meningitis prototype	(6)
χM2000-χM2128	MG1655::Tn10dRCP2 insertion mutants (see Table 2)	This study
χM2130	MG1655 zija-218::Tn10dSpcRCP2, zijg-224::Tn10dKanRCP2	This study
χM2131	RS218zija-218∵Tn10dSpcRCP2, zijg-224∵Tn10dKanRCP2	This study
CU267	Bacillus subtilis host strain for pGI-series plasmids	(9)
Plasmids		
pGI290	Gram ⁺ suicide plasmid carrying Tn10dKanRCP2	(22)
pGI300	Gram ⁺ suicide plasmid carrying Tn10dSpcRCP2	(22)
pGI310	Gram ⁺ suicide plasmid carrying Tn10dCamRCP2	(22)
Phage		
P1∆dam rev6	large plaque revertant of	(7)
	P1 cm $c1.100 \ r^- \ m^- \ dam\Delta MB$	

pGI310 as described by Dower et al. (8): Briefly, plasmid DNA was column purified according to the manufacturer's specifications (Wizard Maxiprep column; Promega; Madison, WI) from *Bacillus subtilis* strain CU267 (9). Aliquots of 40 μ l of competent MG1655 cells (10^{10} cfu/ml) mixed with 2 μ l of plasmid DNA (10μ g/ml) were electroporated by use of a Gene Pulser (Bio-Rad; Hercules, CA) apparatus with settings of 2.5 kV, 25 μ F, and 200 Ω . Routinely, 10^3 – 10^4 Km^R, Sp^R, or Cm^R colonies were isolated per 1 μ g of *B. subtilis* plasmid DNA. Double insertion mutants of strain MG1655 and single-and double-insertion mutants of strain RS218 were generated by transducing recipient strains with P1 $\Delta dam rev6$ lysates of MG1655 insertion mutants (10). Genomic structures of the resulting insertion mutants were screened for P1 transduction fidelity and for gene-order conservation between strains (10).

Genomic DNA biophysical techniques. Genomic DNAs were purified from 5 ml overnight cultures of E. coli::Tn10dRCP2 mutants in a manner suitable for yielding macrorestriction fragments (0.05–1.0 Mb) as described (10). Absence of nonspecific DNA degradation in stored agarose dots (TE pH 7.5 at 4° C) for up to 12 months was confirmed. After digestion of agarose-embedded DNAs with I-Sce I (Boehringer-Mannheim; Indianapolis, IN) for 1 h, NotI (New England Biolabs, Beverly, MA) for 4–5 h, or BlnI (Panvera; Madison, WI) overnight, according to the manufacturers' directions, and after reaction-buffer decanting, dots were melted (70° C) and gently pipetted with plastic 200 μl tips into sample wells in 1.3% agarose (PFGE-approved; FastLane; FMC, Portland, ME) gels for electrophoresis in 0.5X TBE buffer (0.045 M Tris borate/0.045 M boric acid/0.001 M EDTA) in a PFGE apparatus (Bio-Rad; DR-III) according to the manufacturer's instructions. Pulse-ramping parameters were determined as described elsewhere (11). After electrophoresis of samples with Megabase I and/or II DNA standards (Gibco/BRL, Bethesda, MD), gels were analyzed as described elsewhere (12).

RESULTS AND DISCUSSION

(a) Isolation of Rare-Restriction-Sites Insertions

A series of 129 insertions in prototype *E. coli* K-12 strain MG1655 (13) was assembled for purification of chromosomal segments without cloning. These were made with one of the three rare-restriction-sites-carrying transposable elements Tn10dKanRCP2, Tn10dSpcRCP2, or Tn10dCamRCP2 (delivered by plasmid vectors pGI290, pGI300, and pGI310, respectively, and referred to collectively as 'Tn10dRCP2' elements). Individual insertions were isolated from collections of random insertion mutants made with each of these varieties of insertion element, through a combination of the following methods: (*i*) screening with P1 lysates of pooled insertion mutants for P1 cotransductional linkage (14) to individual, previously established Tn10dRCP1 insertions (10); (*ii*) screening for insertions in known biosynthetic genes by a combination of

auxanography and rare-restriction mapping (12); and (*iii*) direct screening of insertions by rare-restriction mapping. The criteria for inclusion in the series were occurrence of (*i*) adjacent insertions in alternating antibiotic resistances and (*ii*) insertions at intervals allowing subdivision of the entire chromosome into 10, 20, or 70 equivalently sized contiguous/nonoverlapping segments.

(b) Locations of the Insertions on the NotI and BlnI Restriction Maps of the MG1655 Chromosome

Macrorestriction map coordinates of the Tn10dRCP2 insertions were determined to allow their use in purification of positionally-specified chromosomal segments (Table 2). This required both ordering of the insertions and orienting of their associated *Not*I and *Bln*I subfragments (CCW or CW about the insertions), a process that simultaneously resulted in reconstruction of the MG1655 *Not*I and *Bln*I maps (15). The physical distances between pairs of adjacent insertions averaged 35 kb, with the largest gap being \sim 110 kb.

Positions of the insertions on the *E. coli* genetic map (e.g., by P1-cotransductional or conjugational linkage to established genetic markers) were not directly determined in this study. However, their physical distances from other nearby markers (e.g., Tn10dRCP1 insertions that were previously subjected to both genetic and *Notl/BlnI* mapping; ref. 10) may be readily determined from the data in Table 2, and their genetic map locations estimated from this information (16). By the same approach, locus designations (e.g., *zab*, *zfb*, etc.) for the insertions [according to Chumley, Menzel, and Roth (17), with minor modification (10)] could be assigned (Table 2). The potential double mutants from the insertion set define thousands of different *E. coli* chromosomal intervals.

(c) Segmentation of the E. coli Chromosome at Pairs of Insertion Sites

The NotI, BlnI, and other rare restriction sites contained within the Tn10dRCP2 elements (including I-CeuI, BsiWI, SrfI, SwaI, XbaI, SnaBI, SphI, SfiI, PacI, PmeI, BspI, and Sse8387I) may serve to facilitate mapping of their insertions. However, these sites which are shared with native E. coli sequences can also interfere with purification of insertion-delimited chromosomal segments from Tn10dRCP2 double mutants. This is because native sites in E. coli sequences may lead to either (i) fragmentation of insertion-delimited segments or, (ii) electrophoretic band contamination from fragments generated at other loci. However, the I-SceI restriction site (5' TAGGGATAA-CAGGGTAAT3'; ref. 3), which is also contained within the RCP2 sequence but not in native E. coli sequences, would be expected to allow purification of E. coli chromosomal segments (i.e., of segments delimited by pairs of Tn10dRCP2 insertions) by specifying cleavages at insertion sites only.

To test this approach, purification of an MG1655 segment flanked by different Tn10dRCP2 insertions was undertaken. Fig. 1 shows separation of the DNA between two insertions at \sim 90 and \sim 95 min from the rest of genomic DNA in strain χ M2130, one of the progeny from crossing the MG1655 single insertion mutants χ M2118 and χ M2124. The DNA between these insertions was visualized upon I-SceI digestion/PFGE as an isolated I-SceI band of 240 kb (lane 3). Both the separation between these insertions as determined by MG1655 NotI mapping (\sim 225 kb; Table 2) and the lack of additional bands was consistent with specific activity of the I-SceI endonuclease at insertion sites only (18). The same procedure has also been applied recently at various other MG1655 loci, allowing gel purification of chromosomal segments in sufficient quantities for comprehensive, random subcloning and sequencing (18a). Thus pairs of Tn10dRCP2 insertions can be used to achieve, without cloning, physical purification of the genes located in any E. coli chromosomal interval. Conversely, a benefit of the purified products obtained from Tn10dRCP2 double mutants may be to allow manufacture of DNA filters, containing custom-made contiguous/nonoverlapping K-12 genomic segments (cf. refs. 15 and 19), for rapid and precise physical mapping of E. coli genes obtained by cloning.

TABLE 2 Locations of MG1655::Tn10dRCP2 Insertions

Insertion ^{a,b}	Native fragments interrupted ^c	Not I map coordinate
	MG1655∷Tn <i>10</i> dKanRCP2; Km ^R	Coordinate
zab-100	B _N (340, 18), H _B (80, 155)	7 kb
car-101	D_N (10, 269), H_B (100, 130)	35 kb
zac-103	D _N (70, 210), H _B (155, 80)	95 kb
zad-104	D _N (130, 150), H _B (225, 15)	155 kb
zah-106	D_N (235, 45), C_B (30, 30)	260 kb
zah-108	C_N (5, 355), J_B (20, 860)	309 kb
zaj-110	C _N (90, 270), J _B (100, 780)	394 kb
zbc-112	C_N (220, 140), J_B (235, 645)	524 kb
zbf-116	C _N (310, 50), J _B (320, 560)	614 kb
zbh-118	P _N (80, 25), J _B (440, 440)	742 kb
zbh-120	K_N (15, 140), J_B (480, 400)	780 kb
zbj-123	K_N (100, 55), J_B (560, 320)	865 kb
zcb-125	J_{N} (50, 165), J_{B} (670, 210)	968 kb
put-129	R _N (45, 50), M _B (5, 230)	1177 kb
zch-131	I_N (5, 85), M_B (60, 175)	1233 kb
trp-133	I_N (70, 20), M_B (120, 115)	1298 kb
zda-136	G _N (65, 210), M _B (200, 35)	1383 kb
zdb-137	G _N (100, 180), G _B (5, 195)	1418 kb
zdd-141	G_N (230, 45), G_B (140, 60)	1548 kb
zdg-144	O _N (45, 205), L _B (30, 1039)	1636 kb
zdj-147	O _N (175, 75), L _B (150, 960)	1766 kb
zea-150	O _N (230, 20), L _B (210, 860)	1821 kb
zed-152	N _N (80, 50), L _B (310, 760)	1922 kb
zeg-160	F _N (115, 135), L _B (530, 540)	2127 kb
zei-162	W _N (10, 5), L _B (640, 430)	2273 kb
purF164	M _N (115, 75), L _B (770, 300)	2392 kb
zfc-166	V_N (7, 7), L_B (850, 220)	2474 kb
zfg-169	E _N (125, 135), L _B (970, 90)	2606 kb
zfi-171	E _N (190, 70), L _B (1040, 30)	2671 kb
pheA173	E _N (225, 40), K _B (10, 1047)	2706 kb
tyrA174	E _N (225, 40), K _B (10, 1047)	2706 kb
zfj-175	E _N (250, 13), K _B (30, 1040)	2731 kb
zfi-176	A_{N} (35, 950), K_{B} (85, 972)	2779 kb
zga-179	A_{N} (100, 890), K_{B} (150, 907)	2844 kb
cys-180	A _N (115, 875), K _B (155, 902)	2859 kb
zgd-184	A_N (240, 750), K_B (295, 762)	2984 kb
zgf-187	A_{N} (320, 670), K_{B} (360, 700)	3064 kb
zgh-190	A_{N} (420, 570), K_{B} (465, 590)	3164 kb
argG193	A_{N} (520, 470), K_{B} (580, 480)	3264 kb
zhc-194	A _N (600, 390), K _B (644, 413)	3344 kb
zhc-195	A_{N} (620, 370), K_{B} (677, 380)	3364 kb
zhh-197	A_{N} (760, 230), K_{B} (807, 250)	3504 kb
zhi-200	A _N (850, 140), K _B (900, 160)	3594 kb
zhj-202	A_{N} (890, 100), K_{B} (927, 130)	3634 kb
zib-205	L _N (15, 190), K _B (1050, 5)	3751 kb
zid-207	L_N (90, 120), F_B (75, 75)	3826 kb
zif-209	L _N (160, 50), F _B (145, 5)	3896 kb
ilvG210	L _N (175, 35), D _B (5, 75)	3911 kb
metE213	S_N (29, 7), D_B (65, 20)	3972 kb
zii-214	$T_N (30, 7), D_B (80, 5)$	4009 kb
zij-216	H _N (25, 220), E _B (35, 95)	4042 kb
pur-220	H_N (140, 105), A_B (30, 5)	4157 kb

TABLE 2 Continued

Insertion ^{a,b}	Native fragments interrupted ^c	Not I map coordinate ^a
zje-222	B _N (14, 345), I _B (110, 250)	4276 kb
zjg-224	B _N (14, 343), I _B (110, 230) B _N (65, 295), I _B (160, 200)	4327 kb
zji-227	B _N (215, 145), I _B (100, 200) B _N (215, 145), I _B (300, 60)	4477 kb
200 221		44// KU
	MG1655∷Tn10dSpcRCP2; Sm ^R	
car-102	D _N (10, 270), H _B (100, 130)	35 kb
zae-105	D _N (140, 140), H _B (230, 5)	165 kb
zah-107	D_N (245, 30), C_B (51, 10)	270 kb
zaj-109	C_N (35, 325), J_B (50, 830)	339 kb
zba-111	C _N (120, 240), J _B (135, 745)	424 kb
zbd-114 zbg-117	C _N (250, 110), J _B (260, 620) P _A (25, 80), J _A (305, 485)	554 kb 687 kb
zbh-119	P _N (25, 80), J _B (395, 485) P _N (95, 5), J _B (460, 420)	757 kb
zbi-112	K _N (65, 90), J _B (530, 350)	830 kb
zca-124	J_N (35, 180), J_B (650, 230)	953 kb
zcc-126	J_N (85, 130), J_B (700, 180)	1003 kb
zcg-128	J _N (195, 20), J _B (800, 80)	1113 kb
zcg-130	R_N (80, 20), M_B (30, 205)	1212 kb
zci-132	I _N (45, 45), M _B (90, 145)	1273 kb
zda-135	G _N (5, 270), M _B (150, 85)	1323 kb
zdh-146	O _N (145, 105), L _B (130, 940)	1736 kb
zdj-149	O _N (200, 55), L _B (180, 890)	1791 kb
zea-151	N _N (15, 115), L _B (240, 830)	1857 kb
zed-154	U_N (10, 30), L_B (380, 690)	1981 kb
hisA158	F _N (55, 195), L _B (470, 600)	2067 kb
zee-159	F _N (70, 180), L _B (485, 585)	2082 kb
zeh-161	F_N (185, 65), L_B (580, 490)	2197 kb
zfa-163	M _N (45, 145), L _B (700, 370)	2322 kb
zfc-167	V _N (7, 7), L _B (845, 225)	2474 kb
zfh-170	E _N (145, 115), L _B (1005, 65)	2626 kb
zfi-172	E_{N} (215, 50), L_{B} (1062, 7)	2696 kb
zga-178	A_{N} (70, 920), K_{B} (115, 942)	2814 kb
cys-181	A_{N} (115, 875), K_{B} (155, 902)	2859 kb
zgb-183	A_{N} (180, 810), K_{B} (220, 837)	2924 kb 2994 kb
zgd-185 zgf-188	A _N (250, 740), K _B (290, 770) A _N (360, 630), K _B (405, 650)	3104 kb
zgj-191	A _N (500, 630), K _B (403, 630) A _N (515, 475), K _B (560, 495)	3259 kb
zhd-196	A _N (675, 315), K _B (718, 333)	3419 kb
zhh-198	A _N (777, 215), K _R (822, 235)	3521 kb
zhi-199	A _N (845, 145), K _B (888, 163)	3589 kb
zhj-201	A _N (870, 125), K _B (920, 143)	3614 kb
zib-203	A _N (960, 30), K _B (1020, 50)	3704 kb
zid-206	$L_{\rm N}$ (75, 130), $F_{\rm B}$ (60, 90)	3811 kb
zie-208	L _N (115, 100), F _B (100, 50)	3851 kb
ilvG211	L _N (175, 35), D _B (5, 75)	3911 kb
zig-212	S _N (3, 33), D _B (42, 42)	3946 kb
zja-218	H _N (85, 160), E _B (95, 35)	4102 kb
argC219	H_N (100, 145), E_B (110, 20)	4117 kb
zje-221	B _N (5, 355), I _B (100, 260)	4267 kb
zjh-225	B_N (135, 225), I_B (230, 130)	4397 kb
<i>zjh</i> -226	B_N (160, 200), I_B (255, 105)	4422 kb
zaa-228	B _N (280, 80), H _B (26, 210)	4542 kb

TABLE 2 Continued

	Native fragments interrupted ^c	Not I map coordinate ^{d}
Insertion ^{a,b}		
	MG1655∷Tn <i>10</i> dCamRCP2; Cm ^R	
zbd-113	C_N (250, 105), J_B (265, 615)	554 kb
zbe-115	C _N (295, 65), J _B (310, 570)	599 kb
zbi-121	K_N (57, 96), J_B (520, 360)	822 kb
zcd-127	J_N (125, 90), J_B (740, 140)	1043 kb
zcj-134	I _N (87, 3), M _B (140, 95)	1315 kb
zdb-138	G _N (140, 130), G _B (45, 155)	1458 kb
zdd-139	G _N (205, 70), G _B (115, 85)	1523 kb
zdd-140	G _N (225, 50), G _B (135, 65)	1543 kb
<i>zdd</i> -142	G _N (235, 40), G _B (145, 55)	1553 kb
zdg-143	O _N (5, 245), G _B (190, 10)	1596 kb
zdh-145	O _N (75, 175), L _B (60, 1009)	1666 kb
zdj-148	O _N (200, 50), L _B (175, 935)	1791 kb
zed-153	N _N (105, 25), L _B (340, 730)	1947 kb
zed-155	U _N (35, 5), L _B (405, 665)	2006 kb
zee-156	F _N (15, 235), L _B (430, 640)	2027 kb
zee-157	F _N (40, 210), L _B (455, 615)	2052 kb
zfc-165	M_N (145, 45), L_B (800, 270)	2422 kb
zfe-168	E _N (75, 185), L _B (920, 140)	2556 kb
<i>zfj</i> -177	A _N (45, 940), K _B (95, 962)	2789 kb
zga-182	A _N (130, 860), K _B (170, 987)	2874 kb
zgf-186	A _N (285, 705), K _B (325, 735)	3029 kb
zgh-189	A _N (400, 590), K _B (445, 610)	3144 kb
zgi-191	A _N (465, 525), K _B (510, 550)	3209 kb
zib-204	L_N (7, 200), K_B (1060, 10)	3743 kb
zii-215	H_N (20, 225), E_B (30, 90)	4037 kb
zii-217	H _N (35, 210), E _B (45, 85)	4052 kb
zig-223	B _N (65, 295), I _B (160, 200)	4327 kb

[&]quot;Locus designations either were according to Chumley, Menzel, and Roth (17), with minor modifications (10), or were determined by auxanography (12). In instances of auxotrophies that may be conferred by mutations at any one of multiple loci, specific designations were determined where possible by alignments between the insertions' physical-map coordinates and the *E. coli* genetic map.

^d The NotI map coordinates of insertions (clockwise from 0 kb) were determined by adding, to the NotI coordinate of the first insertion in the series (zab-100::Tn10dKanRCP2), the lengths of the NotI subfragments between it and each successive insertion. The NotI coordinate of the first insertion in the series (7 kb) was designated by its position relative to the MG1655 native NotI site nearest the car locus (12). Note that these physical-coordinate determinations may disagree with their BlnI-map counterparts from the same chromosome. This is partly explained, given the size-range-specific variation in accuracy of PFGE measurements (11), by identical chromosomal regions being contained within NotI and BlnI fragments of different sizes.

^b Strain numbers for the χ M-series strains containing the insertions (see Table 1) were obtained by adding 1900 to their insertions' allele numbers (e.g., dictating that the strain containing the zab-100:: Tn10dKanRCP2 insertion allele be named strain χ M2000).

^c The *Not*I and *Bln*I fragments from the MG1655 chromosome were designated according to Perkins, et al. (15), with the addition of the subscripts N or B denoting fragments from the *Not*I or *Bln*I maps, respectively. The pairs of *Not*I and *Bln*I subfragments generated by each insertion were as indicated (CCW, CW). Both the sequential ordering of insertions and the CCW/CW orientations of subfragments were inferred from the two sets of data for each insertion (one set from each rare-restriction pattern). This was possible because only one ordering and one combination of orientations allowed agreement of the physical distances between neighboring insertions on both the *Not*I and *Bln*I maps (10).

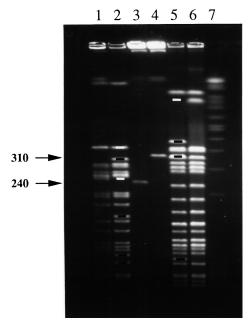


FIG. 1. PFGE separation of genomic DNA segments between Tn10dRCP2 insertions. Lanes 1, 2, 5, and 6: wild-type MG1655, χ M2130, χ M2131, and wild-type RS218, respectively, digested with *Not*I. Lanes 3 and 4: χ M2130, χ M2131, respectively, digested with I-*Sce*I. Lane 7: Megabase I standards. The MG1655 native *Not*I fragments H (245 kb) and B (360 kb; causing a doublet band with fragment C) were cleaved into pairs of subfragments of 80 and 170 kb, and 70 and 290 kb, respectively, in the double insertion mutant χ M2130 (as predicted from the *Not*I digestion data from the single insertion mutants containing the same two insertions; Table 2). The *Not*I pattern of genomic DNA from strain χ M2131 (containing the identical two insertions in the RS218 background) showed double cleavage of the RS218 native fragment B (confirming that this fragment contains the RS218 chromosomal interval corresponding to \sim 90–95 min; ref. 10) resulting in three subfragments of 70, 310, and 400 kb. Digestion of χ M2130 and χ M2131 genomic DNAs with I-*Sce*I, in contrast to *Not*I, produced isolated bands. (However, a small number of additional faint bands caused by cleavage at I-*Sce*I secondary sites are not uncommon; ref. 18.) This allowed direct side-by-side PFGE comparison of allelic restriction fragments (240 kb_{MG1655} and 310 kb_{RS218}) with corresponding endpoints. Note that following I-*Sce*I digestion the majority of genomic material remained as high molecular-weight DNA in the loading well.

The MG1655::Tn10dRCP2 insertion alleles should be especially useful for biophysical comparisons of allelic genomic segments from different E. coli isolates. This is because I-SceI digestion at insertion sites only is expected to obviate the potential for interference that is posed by nativerestriction-site degeneracy between different strains. Thus a comparison of the above MG1655 segment containing 90-95 min, with the corresponding chromosomal segment from a pathogenic E. coli strain was undertaken. Separation of the segment between the identical two xm2130 insertions transferred into the pathogenic E. coli RS218 background (strain xM2131), is shown in lane 4 of Fig. 1. I-SceI digestion/PFGE resulted in an isolated 310-kb segment, indicating a difference of 70 kb between strains MG1655 and RS218 in the size of the interval. This difference provided confirmation of comparative Not I/Bln I mapping from these strains indicating an \sim 66-kb segment of RS218-specific DNA at \sim 91–93 min (10). However, by contrast with the multiband measurements required to calculate comparative Not I/Bln I maps, I-SceI digestion at pairs of corresponding Tn10dRCP2 insertion sites allowed direct side-by-side PFGE comparisons of isolated bands. The expected precision of this approach over comparative NotI/BlnI mapping (as the later may suffer from both the requirement for added measurements per se and the size-rangespecific variation in accuracy that is a prominent characteristic of PFGE measurements; ref. 11) should allow improved detection of strain-specific E. coli chromosomal segments encoding virulence and/or other strain-specific traits (20).

We conclude that I-SceI digestion/PFGE of DNAs from Tn10dRCP2 double insertion mutants allows rapid isolation of E. coli genomic segments without cloning. This method (which can be applied in other species supporting Tn10 transposition, or in other species that can undergo genetic exchanges leading to incorporation of E. coli insertions) should be particularly useful for purifying native contiguous/nonoverlapping genomic DNA segments (for Southern analysis or sequencing), and for comparing allelic chromosomal segments from different strains (21). The procedure is complementary to the polymerase-chain-reaction amplification method, being (i) applicable to much larger genomic segments and (ii) easier to use in instances where flanking insertions are more readily obtained than flanking sequences.

ACKNOWLEDGMENTS

This work was supported by grants from the National Institutes of Health (USA), and the Fund for Scientific and Medical Research (Belgium) of which J.M. is a Research Associate.

REFERENCES

- 1. Berg, C. M., Liu, L., Wang, B., and Wang, M.-D. (1988) J. Bacteriol. 170, 468-470.
- 2. Szybalski, W. (1993) Gene 135, 279-290.
- 3. Dujon, B., Belfort, M., Butow, R. A., Jacq, C., Lemieux, C., Perlman, P. S., and Vogt, V. M. (1989) Gene 82, 115–118.
- 4. Thierry, A., and Dujon, B. (1992) Nucleic Acids Res. 20, 5625-5631.
- Miller, J. H. (1972) Experiments in Molecular Genetics, p. 432, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
- 6. Bloch, C. A., Thorne, G. M., and Ausubel, F. M. (1989) Infect. Immun. 57, 2141-2148.
- 7. Sternberg, N. L., and Maurer, R. (1991) Methods Enzymol. 204, 18-43.
- 8. Dower, W. J., Miller, J. F., and Ragsdale, C. W. (1988) Nucleic Acids Res. 16, 6127-6145.
- 9. Mahillon, J., and Kleckner, N. (1992) Gene 116, 69-74.
- 10. Rode, C. K., Obreque, V. H., and Bloch, C. A. (1995) Gene 166, 1-9.
- Birren, B., and Lai, E. (1993) Pulsed Field Gel Electrophoresis: A Practical Guide, pp. 108, 120, Academic Press, San Diego.
- 12. Heath, J. D., Perkins, J. D., Sharma, B., and Weinstock, G. M. (1992) J. Bacteriol. 174, 558-567.
- Bachmann, B. J. (1987) In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Neidhardt, F. C., Ingraham, J. L., Low, K. B., Magasanik, B., Schaechter, M., and Umbarger, H. E., Eds.), Vol. 2, pp. 1190–1219, American Society for Microbiology, Washington, DC.
- Miller, J. H. (1992) A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria, pp. 357–364, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- 15. Perkins, J. D., Heath, J. D., Sharma, B. R., and Weinstock, G. M. (1993) J. Mol. Biol. 232, 419-445.
- 16. Wu, T. T. (1966) Genetics 54, 405-410.
- 17. Chumley, F. G., Menzel, R., and Roth, J. R. (1979) Genetics 91, 639-655.
- Thierry, A., Perrin, A., Boyer, J., Fairhead, C., Dujon, B., Frey, B., and Schmitz, G. (1991) Nucleic Acids Res. 19, 189–190.
- 18a. Bloch, C. A., Rode, C. K., Kirkpatrick, H., Plunkett, G., III, Rose, D., Mayhew, G., Kijenski, H., and Blattner, F. R. (Manuscript in preparation).
- 19. Kohara, Y., Akiyama, K., and Isono, K. (1987) Cell 50, 495-508.
- 20. Bloch, C. A., Rode, C. K., Obreque, V., and Russell, K. Y. (1994) J. Bacteriol. 176, 7121-7125.
- 21. Lawrence, J. G., Ochman, H., and Hartl, D. L. (1991) J. Gen. Microbiol. 137, 1911–1921.
- 22. Mahillon, J., Rode, C. K., and Bloch, C. A. (Manuscript in preparation).